3,090 research outputs found

    The development of Lutheran pastoral care in America

    Full text link
    This item was digitized by the Internet Archive

    Geodatabase Development to Support Hyperspectral Imagery Exploitation

    Get PDF
    Geodatabase development for coastal studies conducted by the Naval Research Laboratory (NRL) is essential to support the exploitation of hyperspectral imagery (HSI). NRL has found that the remote sensing and mapping science community benefits from coastal classifications that group coastal types based on similar features. Selected features in project geodatabases relate to significant biological and physical forces that shape the coast. The project geodatabases help researchers understand factors that are necessary for imagery post processing, especially those features having a high degree of temporal and spatial variability. NRL project geodatabases include a hierarchy of environmental factors that extend from shallow water bottom types and beach composition to inland soil and vegetation characteristics. These geodatabases developed by NRL allow researchers to compare features among coast types. The project geodatabases may also be used to enhance littoral data archives that are sparse. This paper highlights geodatabase development for recent remote sensing experiments in barrier island, coral, and mangrove coast types

    Very Shallow Water Bathymetry Retrieval from Hyperspectral Imagery at the Virginia Coast Reserve (VCR\u2707) Multi-Sensor Campaign

    Get PDF
    A number of institutions, including the Naval Research Laboratory (NRL), have developed look up tables for remote retrieval of bathymetry and in-water optical properties from hyperspectral imagery (HSI) [6]. For bathymetry retrieval, the lower limit is the very shallow water case (here defined as \u3c 2m), a depth zone which is not well resolved by many existing bathymetric LIDAR sensors, such as SHOALS [4]. The ability to rapidly model these shallow water depths from HSI directly has potential benefits for combined HSI/LIDAR systems such as the Compact Hydrographic Airborne Rapid Total Survey (CHARTS) [10]. In this study, we focused on the validation of a near infra-red feature, corresponding to a local minimum in absorption (and therefore a local peak in reflectance), which can be correlated directly to bathymetry with a high degree of confidence. Compared to other VNIR wavelengths, this particular near-IR feature corresponds to a peak in the correlation with depth in this very shallow water regime, and this is a spectral range where reflectance depends primarily on water depth (water absorption) and bottom type, with suspended constituents playing a secondary role

    Building zoned ignimbrites by recycling silicic cumulates: insight from the 1,000km3 Carpenter Ridge Tuff, CO

    Get PDF
    The ~1,000km3 Carpenter Ridge Tuff (CRT), erupted at 27.55Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe-Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51-53 wt% SiO2) with Ba contents to 4,000-5,000ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4-5km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that partly masks the in situ differentiation process. The CRT provides a particularly clear perspective on processes of in situ crystal-liquid separation into a lower crystal-rich zone and an upper eruptible cap, which appears common in incrementally built upper-crustal magma reservoirs of high-flux magmatic provinces

    Imaging Spectrometer Implementation on a Small Satellite Platform for Aquatic Ecosystems Science

    Get PDF
    The implementation of Imaging spectrometers with state-of-the-art performance on small satellites is challenging due to the size, weight, and power (SWaP) limitations. We have recently developed a compact form, the Chrisp Compact VNIR/SWIR Imaging Spectrometer (CCVIS), that facilitates their usage without sacrificing performance. The CCVIS enables a modular implementation that, combined with a freeform telescope, produces a wide field of view with high signal to noise ratio (SNR) performance. The targeted scientific application is the study of aquatic ecosystems. The imaging spectrometer is designed to address carbon sequestration in coastal margins and wetlands, kelp and seagrass studies, coral reefs, harmful algal blooms and hypoxia, and carbon cycling in this dynamic environment. The requirements are challenging since the high SNR, which is necessary in order to produce quality data products over water, is coupled with sufficient dynamic range in order to simultaneously record spectra from the shore area, which has elevated spectral radiance in comparison to the water. To meet these requirements, the small satellite will execute a pitchback maneuver where the imaging of the slit projected onto the surface is slowly scanned while recording focal plane array (FPA) readouts at a higher rate. The effective frame rate is determined by the time it takes to scan the projected slit one ground sample distance (GSD). This concept of operation avoids saturation over the land surface while obtaining high SNR over the water. This approach has the added benefit of measuring a range of angles during a single GSD acquisition, providing insight into the bidirectional reflectance distribution function (BRDF). One consequence of this approach is extremely large data volumes requiring a high bandwidth downlink system. Laser communications is a critical technology that enables the transfer of these large data volumes. We present a preliminary design of the imaging spectrometer based on the aquatic ecosystem requirements including the modular implementation of the CCVIS, the laser communications system, and the implementation on a ESPA-grande satellite

    A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy

    Get PDF
    A new approach was developed to measure the water content of silicate glasses using Raman spectroscopy, which is independent of the glass matrix composition and structure. Contrary to previous studies, the compositional range of our studied silicate glasses was not restricted to rhyolites, but included andesitic, basaltic and phonolitic glasses. We used 21 glasses with known water contents for calibration. To reduce the uncertainties caused by the baseline removal and correct for the influence of the glass composition on the spectra, we developed the following strategy: (1) application of a frequency-dependent intensity correction of the Raman spectra; (2) normalization of the water peak using the broad T-O and T-O-T vibration band at 850-1250cm−1 wavenumbers (instead of the low wavenumber T-O-T broad band, which appeared to be highly sensitive to the FeO content and the degree of polymerization of the melt); (3) normalization of the integrated Si-O band area by the total number of tetrahedral cations and the position of the band maximum. The calibration line shows a ±0.4wt% uncertainty at one relative standard deviation in the range of 0.8-9.5wt% water and a wide range of natural melt compositions. This method provides a simple, quick, broadly available and cost-effective way for a quantitative determination of the water content of silicate glasses. Application to silicate melt inclusions yielded data in good agreement with SIMS dat

    Linking goniometer measurements to hyperspectral and multi-sensor imagery for retrieval of beach properties and coastal characterization

    Get PDF
    In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR\u2711). Focus areas for VCR\u2711 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR\u2711 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR\u2711
    • …
    corecore